
Team 27 Final Report 1

Abstract—Current LED displays and televisions are designed

for viewing at shorter distances. To achieve discernible imagery

with this technology, larger resolution and overall size is

necessary. This project aims to create an interactive light display

that is designed for viewing from further distances without the

need for increasing the size of the overall display. The goal was

also to incorporate campus interaction through the use of our iOS

app in which people walking by can download and use to interact

with the display.

I. INTRODUCTION

Traditionally, television screens and displays were created

to be viewed from distances suitable for living rooms and

households. This poses a problem if someone wanted to put up

a display whose purpose was to be seen from distances that far

surpass the usual living space. With televisions, the only

solution would be to increase the size of the overall screen and

resolution, but at a certain point the size becomes cumbersome

for some applications [1]. One of the main goals of our project

is to design a light display that can reach viewership from a

distance not achievable by a television of the same size with

similar effect as represented by Figure 1.

Figure 1: Representation of Effect Desired

 Most people, when tasked with creating displays for large

audiences, obtain larger screens instead of looking at other

aspects of the television. There are small LED boards that

have modified resolution and size that allow for an extended

viewing range, but those are usually for small scale

P. Browne from New Jersey (e-mail: pbrowne@umass.edu).

E. Bryce from Massachusetts (e-mail: ebryce@umass.edu).

V. Menon from California (e-mail: vmenon@umass.edu).

M. Polin, from Massachusetts (e-mail: mpolin@umass.edu).

T. Zhen from Massachusetts (e-mail: tzhen@umass.edu).

applications [2]. The problem as a whole has not changed over

time, as the simple solution has always been to increase the

size of the television to achieve the ultimate goal. We as a

team also want to promote campus interaction through the use

of our light display. Small scale LED boards like that would

not fulfill our need in that regards either as we are trying to

modify the resolution through our own design.

 Through our initial analysis of the problem and the goal of

our design, we have come up with several guidelines and

specifications that our light display will need to fulfill as

outlined by Table 1. Our light display aims to solve the

problems discussed previously, with similar power

consumption needs to a standard television.

TABLE I

GENERAL SPECIFICATIONS

Specification Value

Viewable Distance ~60m

Power Consumption <400W

Visibility by number of people ~100s

II. DESIGN

A. Overview

Figure 2: Block Diagram

Our overall design revolved around creating our own LED

board with resolution designed to optimize viewing from

further distances than a television can allow. The LEDs we

based our entire design off of are the WS2812 RGB LEDs [3].

These were chosen for their cost-efficiency as well as their low

power consumption for what we need them to accomplish.

Alternative technologies we considered were LED strips and

ITS LIT: An Interactive Light Display

Patrick Browne, EE, Emma Bryce, EE, Varun Menon, EE, Mike Polin, CSE, and Tommy Zhen, CSE

Team 27 Final Report 2

flood lights, but ultimately we chose the WS2812 RGB LEDs,

shown in Figure 3. The LED strips were ruled out because they

were of fixed length and did not allow us to change the

distance between each LED, also known as pixel pitch, thus

limiting our resolution to a preset value [4]. The flood lights

were ruled out also due to resolution difficulties because of

their size and wide field of coverage.

Figure 3: WS2812 RGB LEDs

The other sub-systems integrate to determine what is sent to

the display and how it is done as well a block that governs

what is to be shown eventually on our display. The

microcontroller we have chosen to help drive our display is the

Raspberry Pi. The Raspberry Pi in our final project iteration

acts both as the server and the display driver, which receives

requests via user input from the iOS app and will update the

display accordingly.

B. Block 1:LED Display

This will display an image controlled by a microcontroller.

For our display we ended up going with a pixel pitch of 1 inch

or 25cm down from our original estimate of 30cm. This

decision was made so that all of the PCB’s would be uniform

when put together. Each LED on the outside was half an inch

from the border of the PCB, so that when two PCB’s were put

side by side the pitch would remain an inch. By decreasing the

pitch we were able to increase the number of LED’s for the

display. Each PCB was able to house 144 LED’s with the total

display housing 1296 LED’s. With the additional LED’s the

total power consumed by the whole system if each LED was

displaying white jumped up to 388.8 Watts. The PCB’s were

designed using Altium, the schematic of which is shown in

Figure 4, and were fabricated by EasyEDA. When the PCB’s

arrived, they were brought to Worthington Assembly Inc. who

helped to populate the boards for us. The PCB’s were mounted

on a wooden display.

Figure 4: Schematic of PCB Design

The display we ended up using for FPR and demo day was a

display of LED strips that contained 900 LED’s. We

discovered that there were bad LED’s that were corrupting the

stream of data, because each LED was connected serially

which was causing the problem. Below in Figure 5 is an image

of the display with the PCBs and one can clearly tell when the

signal becomes distorted. We were not able to find which

LED’s were causing the problem due to timing constraints and

debugging issues and as a result is why we ended up using our

backup display as shown in Figure 6.

Figure 5: PCB Display with Distorted Signal

Figure 6: 900 Pixel Backup Display

Team 27 Final Report 3

 The display composed of PCBs is powered by two Aiposen

5V/60A/300W LED Power Supplies and wired up via 12-

gauge THHN copper. Meanwhile, our backup display uses one

of these power supplies. Each power supply converts

120/220V AC to 5V DC. Each power supply also is capable of

handling a maximum current of 60A. The Raspberry Pi

microcontroller is powered by a USB port on power strip that

is used to plug all of the power supplies together.

Figure 7: Power Supply

C. Block 2: Microcontroller and Peripherals

The Raspberry Pi 2 [6] computer will control the

addressable RGB neopixels in the display. The Pi

communicates with the neopixels using their specific timing

protocol to set colors on all of the lights in a neopixel display

to generate a static image. The image that the Raspberry Pi

helps render comes from the server. It downsamples, crops,

and displays images of varying sizes and file types. The

program in which the image is downsampled into the 900

pixels necessary and driven on to the display, is written in

python and accesses the images from a folder on the Raspberry

Pi’s main directory.

Figure 8: WS2812 Pin Configuration

 The program controlling server communication and image

processing and display is written in Python. For our final

project, we had combined the server/queue and display code

onto one Raspberry Pi to help streamline the flow of data

between the iOS app and the display. This way we could use

the Raspberry Pi to act as the server as well.

D. Block 3: iOS App

For our user interface for our senior design project we

created an app using the iOS operating system. The purpose of

the app is to connect the user to our programmable display by

communicating with the server to send information packets to

update the display. To create an app for the iOS operating

system one is required to use an IDE called xcode which uses

an objected oriented coding language called Swift [7]. For our

project’s final iteration, the iOS app is as shown in Figure 9.

We have an initial login screen for general users and on the

second page we included categories for users to choose from.

The general public access library consists of several image

categories, from which users can select a specific category of

their choice. Once in a selected category, users can select from

a host of preset images to be displayed. The app interacts with

the server with HTTP POST requests, where each image on

the app corresponds to an image on the server. When a user

picks an image on the app, the name of the image is sent to the

server which then puts it in the queue. Our iOS app also

includes a super-user portion, where if the super-user submits a

link to a picture, it can be sent to the display in real-time. For

our final app, we were able to establish the communication

with the server and send the correct data to be put on the

queue.

Figure 9: iOS App GUI

E. Block 4: Server

The purpose of the server portion of the project is to store

images and help facilitate commands from the app to the

Raspberry Pi as well as solve queuing requests from multiple

user inputs. The server stores image presets instead of the iOS

app in order to save space on the app itself allowing it to

operate more smoothly and streamlined.

The server being used is an Apache web server [8], which

communicates over the TCP/IP protocol. The server is HTTP

based, which will allow for the iOS app to send HTTP requests

over the network to the server. In order to communicate with

Team 27 Final Report 4

the server, the IP address of the hosting computer is needed

[8].

The server receives requests from the iOS app through a

POST request which is accepted via a PHP script on the

Raspberry Pi and stores the input string on a MySQL database.

The queuing algorithm, which is written in python,

continuously checks this database for new requests in order to

update the display with. The database and queue handle

requests in a FIFO based manner and entries are deleted from

the database after the corresponding image is sent to the LED

display.

F. Block 5: Display Policy

This was going to be our policy on how we decide which

images will be eligible to be displayed. Firstly we needed to

ensure that the image can be displayed clearly on the display.

We also will not be showing any images that contain

profanities. Lastly, the criteria were that we find images that

are compelling and will be used daily by the students

interacting with the display. The original plan was to have it

deployed inside of a building with high visibility to a large

gathering of students or in an area with high traffic. As a group

we discussed the student union because there is a lot of foot

traffic and is still used at night which is when our display will

be seen clearly.

We ended up meeting with Professor Caroline Aragon in the

spring. She gave us the contact for the head of the university’s

Public Art Committee. We wanted to make sure everything

worked before pursuing an audience with the committee.

However, seeing that our PCB display did not properly

function, we were not able to fully commit to a pursuing this

course of action to deploy the final project.

III. PROJECT MANAGEMENT

As a group, we were able to complete all of our FPR

deliverables that we proposed at CDR to our advisors,

Professor Krishna and Professor Fraiser. The table below

outlines what we had promised at CDR. For FPR, we planned

to show that we had a working display as a backup while we

worked on the main PCB display. For the demo portion of

FPR, we were able to show to our advisors the full

functionality of our subsystems from user input to the display

updating in real-time.
TABLE I

FPR Deliverables

Deliverable Status

Display and integration with power supply

and Pi

Complete

Display able to receive requests from

queue and server

Complete

Advanced app GUI, layout, and user input

tested

Complete

Display frame created Complete

 We all work well together as a team and each of us brings

different skills to the project. Emma and Patrick are both EEs

with similar backgrounds in regards to circuit design. They are

working together on the design of the display and driving it

with the Raspberry Pi. Varun is also an EE with experience in

hardware, but he also has experience with software and is

working alongside Mike, who is a CSE with coding

experience, on the iOS app. Tommy is also a CSE with more

experience in programming, and he is working on the server

and integrating that with the other sub-systems.

 As a team, we created the list of proposed deliverables for

FPR and then continued on our work from CDR with everyone

working on their subsystem. As we did with MDR, we had

people designated as the lead for each subsystem, while also

working together as a team to integrate them. We

communicate to each other when we need help and we work

together to help that team member solve that problem.

Adaptation and communication are key elements to working in

a team and we understand it is necessary to the success of our

project. As a team we communicate via group chat outside of

our weekly team and advisor meetings with Professor

Mclaughlin. At our advisor meetings, we discuss our plan for

the next week as well as address any questions anyone may

have.

IV. CONCLUSION

After completing the goals of our FPR presentation to

Professor Krishna and Professor Fraiser, our final project

iteration involved use of our backup display. Our goal was to

use the display comprised of the designed PCBs, but due to

deadline constraints and debugging issues we could not do so.

We were, however, able to demonstrate the full functionality

of each subsystem. When a user chooses an image through our

iOS app, the corresponding POST request is sent to the server

which stores interprets it and stores it in the database until the

display is ready to update, at which point the system waits for

new input from the user via the app.

APPENDIX

A. Cost

 Below is the analysis of the cost of our project with the

PCBs. The table outlined below does not reflect the cost

required to have the boards populated by Worthington

Assembly Inc. and is purely the costs for all of the materials.

ACKNOWLEDGMENT

Firstly, we would like to thank our faculty advisor Professor

David McLaughlin for his professional and unbiased guidance

throughout the semester. We would also like to thank

Professor C. Mani Krishna and Professor Stephen Frasier for

Team 27 Final Report 5

their honest opinions and feedback. We would like to thank

Professor Christopher Hollot and Francis Caron for the work

they do to make this course possible. Lastly, special thanks to

Terry Bernard and Jeremy Paradie for their help throughout

the year.

REFERENCES

[1] J. Govan, "TV sizes and viewing distance," in Crutchfield, 2016.

[Online]. Available: http://www.crutchfield.com/S-

eMvermGxthz/learn/learningcenter/home/TV_placement.html.

[2] "Peggy 2," in Evil Mad Scientist. [Online]. Available:

http://shop.evilmadscientist.com/productsmenu/tinykitlist/75-peggy2.

[3] "www.i-enet.com - WS2812.pdf,". [Online]. Available: https://cdn-

shop.adafruit.com/datasheets/WS2812.pdf.

[4] J. Davis, "What is Pixel pitch and why should I care?,"

www.nanolumens.com, 2011. [Online]. Available:

http://www.nanolumens.com/what-is-pixel-pitch-and-why-should-i-

care/.

[5] [Online].Available:

http://www.seeedstudio.com/document/pdf/WS2812B%20Datasheet.pd

f. (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.

[6] "Raspberrypi2modelb.pdf,". [Online]. Available: https://cdn-

shop.adafruit.com/pdfs/raspberrypi2modelb.pdf.

[7] "Start developing iOS Apps (swift): Jump right in,". [Online].

Available:

https://developer.apple.com/library/content/referencelibrary/GettingStart

ed/DevelopiOSAppsSwift/.

[8] "HTTPD - Apache2 web server,". [Online]. Available:

https://help.ubuntu.com/lts/serverguide/httpd.html.

